复杂的箭头
\draw[-Implies, double, double distance = 0.5ex, red, out=30] (2em,1em) to [pos=0.5] node {\color{red} \huge $\times$} (12em, 0em);
可以直接在TikZ中使用三角函数
\documentclass[tikz,border=3.14mm]{standalone}
\begin{document}
\begin{tikzpicture}
\draw (-2, 0) -- (2, 0)node[right] {$\infty$};
\draw (0, -2) -- (0, 2)node[above] {$0$};
\def\angle{45}
\draw ({-2*cos(\angle)}, {-2*sin(\angle)}) -- ({2*cos(\angle)}, {2*sin(\angle)}) node[right] {1};
\def\angle{135}
\draw ({-2*cos(\angle)}, {-2*sin(\angle)}) -- ({2*cos(\angle)}, {2*sin(\angle)}) node[left] {-1};
\def\angle{30}
\draw ({-2*cos(\angle)}, {-2*sin(\angle)}) -- ({2*cos(\angle)}, {2*sin(\angle)}) node[right] {2};
\def\angle{150}
\draw ({-2*cos(\angle)}, {-2*sin(\angle)}) -- ({2*cos(\angle)}, {2*sin(\angle)}) node[left] {-2};
\def\angle{20}
\draw ({-2*cos(\angle)}, {-2*sin(\angle)}) -- ({2*cos(\angle)}, {2*sin(\angle)}) node[right] {3};
\def\angle{160}
\draw ({-2*cos(\angle)}, {-2*sin(\angle)}) -- ({2*cos(\angle)}, {2*sin(\angle)}) node[left] {-3};
\end{tikzpicture}
\end{document}
非常丑陋的逻辑链
\documentclass[tikz]{standalone}
\usetikzlibrary{arrows.meta}
\begin{document}
\begin{tikzpicture}[
every node/.style={align=center}
]
\node at (0,0) {Countable additivity};
\draw[-Implies, double, double distance = 0.5ex] (0,-1ex) -- (0,-1cm+1ex);
\node at (0,-1cm) {Continuity of measure};
\draw[-Implies, double, double distance = 0.5ex] (0,-1cm-1ex) -- (0,-2cm+1ex);
\node at (0,-2cm) {Egoroff's Theorem};
\draw[-Implies, double, double distance = 0.5ex] (0,-2cm-1ex) -- (0,-3cm+1ex);
\node at (0,-3.2cm) {Bounded Convergence\\Theorem};
\draw[-Implies, double, double distance = 0.5ex] (0,-3.6cm) -- (0,-4.4cm);
\node at (0,-4.6cm) {Fatou's Lemma};
\draw[-Implies, double, double distance = 0.5ex] (1.5em,-4.8cm) -- (2cm,-6cm);
\draw[-Implies, double, double distance = 0.5ex] (-1.5em,-4.8cm) -- (-2cm,-6cm);
\node at (-2cm,-6.8cm) {Monotone\\Convergence\\Theorem};
\node at (2cm,-6.8cm) {Lebesgue\\Dominated\\Convergence\\Theorem};
\draw[-Implies, double, double distance = 0.5ex] (2,-7.6) -- (2,-8.6);
\node at (2cm,-9.4) {General Lebesgue\\Dominated\\Convergence\\Theorem};
\end{tikzpicture}
\end{document}
两个圆相交
\documentclass[tikz,border=10pt]{standalone}
\usetikzlibrary{patterns, intersections}
\begin{document}
\begin{tikzpicture}[scale=1]
\draw[->] (-1, 0) -- (2.5, 0) node[right] {$x$};
\draw[->] (0, -1) -- (0, 2.5) node[above] {$y$};
\node[below left] at (0,0) {$O$};
\coordinate (D1) at (1,0);
\coordinate (D2) at (0,1);
\def\radius{1}
\path[name path=D1] (D1) circle (\radius);
\path[name path=D2] (D2) circle (\radius);
\begin{scope}
\clip (D1) circle (\radius);
\fill[pattern=north east lines] (D2) circle (\radius);
\end{scope}
\draw[thick] (D1) circle (\radius) node[below right=0.5em] {$D_1$};
\draw[thick] (D2) circle (\radius) node[below left=0.5em] {$D_2$};
\node at (D1) {$\bullet$};
\node at (D2) {$\bullet$};
\node[below] at (D1) {$1$};
\node[left] at (D2) {$\mathrm{i}$};
\node[fill=white, inner sep=1pt] at (0.5,0.5) {$d_{12}$};
\end{tikzpicture}
\end{document}
映射
\begin{tikzpicture}[line width=1pt]
\begin{scope}[xshift=-4cm]
\draw[->] (-2, 0) -- (2,0) node[right] {$x$};
\draw[->] (0, -2) -- (0,2) node[above] {$y$};
\draw[blue] (0,0) circle ({exp(1/2)});
\draw[blue] (0,0) circle ({exp(-1/2)});
\node[above left, blue] at ({-exp(-1/2)/sqrt(2)},{exp(-1/2)/sqrt(2)}) {$m_3$};
\node[above left, blue] at ({-exp(1/2)/sqrt(2)},{exp(1/2)/sqrt(2)}) {$m_4$};
\draw[red] (0,0) -- (2,2) node[right] {$m_2$};
\draw[red] (0,0) -- (2,-2) node[right] {$m_1$};
\node[white] at (0,0) {$\bullet$};
\node[red] at (0,0) {$\circ$};
\end{scope}
\draw[<-] (-1,0.5) to [pos=0.5] node[above] {$e^z$} (1,0.5);
\draw[->, red] (-1,-0.5) to [pos=0.5] node[above] {$\operatorname{Ln} z$} (1,-0.5);
\begin{scope}[xshift=4cm]
\draw[->] (-2, 0) -- (2,0) node[right] {$x$};
\draw[->] (0, -2) -- (0,2) node[above] {$y$};
\draw[red] (-2,1) -- (2,1) node[above] {$l_2$};
\draw[red] (-2,-1) -- (2,-1) node[below] {$l_1$};
\draw[blue] (-1/2, -2) -- (-1/2, 2) node[left] {$m_3$};
\draw[blue] (1/2, -2) -- (1/2, 2) node[right] {$m_4$};
\end{scope}
\end{tikzpicture}
\begin{tikzpicture}[scale=0.6]
\begin{scope}[xshift=-5cm]
\begin{axis}[
at={(0,0)},
anchor=center,
axis lines=center,
axis equal,
enlargelimits=true,
]
\addplot[
variable=\t,
red,
samples=201,
smooth,
domain=0:4,
] ({t * cos(180/pi*5*t)}, {t * sin(180/pi*5*t)});
\end{axis}
\end{scope}
\draw[->] (-1,0) to [pos=0.5] node[above] {$\operatorname{Ln} z$} (1,0);
\begin{scope}[xshift=5cm]
\begin{axis}[
at={(0,0)},
anchor=center,
axis lines=center,
enlargelimits=true,
ytick={0, 2*pi, 4*pi, 6*pi},
yticklabels={
$0$, $2\pi$, $4\pi$, $6\pi$
},
yticklabel style={above left}
]
\addplot[
variable=\t,
red,
samples=201,
smooth,
domain=0.01:4,
] ({ln(t)}, {5*t});
\foreach \i in {1,2,3} {
\addplot[samples=2, red, domain=-5:2] {\i*2*pi};
}
\end{axis}
\end{scope}
\end{tikzpicture}
\begin{tikzpicture}
\pgfmathsetmacro{\radius}{0.07}
\begin{scope}[xshift=-4cm]
\draw[->] (-2, 0) -- (2,0) node[right] {$x$};
\draw[->] (0, -2) -- (0,2) node[above] {$y$};
\draw[red, fill=white] (0,0) circle (\radius);
\draw[red, dashed] (0, \radius) -- (-2, \radius);
\draw[red, dashed] (0, -\radius) -- (-2, -\radius);
\fill[red] (1,0) circle (\radius) node[below, red] {$1$};
\end{scope}
\draw[->] (-1,0) to (1,0);
\begin{scope}[xshift=4cm]
\draw[->] (-2, 0) -- (2,0) node[right] {$x$};
\draw[->] (0, -2) -- (0,2) node[above] {$y$};
\fill[red] (0,0) circle (\radius) node[below right, red] {$f_0(1)$};
\fill[red] (0,1) circle (\radius) node[right, red] {$f_0(2)$};
\fill[red] (0,-1) circle (\radius) node[right, red] {$f_{-1}(1)$};
\end{scope}
\end{tikzpicture}
\documentclass[a4paper,zihao=5,UTF8]{ctexart}
\usepackage{tikz}
\usetikzlibrary{positioning, shapes.geometric}
\begin{document}
這個是風鈴:
\begin{center}
\begin{tikzpicture}[node distance=30pt]
\node[draw, diamond, aspect=2] (choice) {風有在吹嗎?};
\node[draw, below=of choice, minimum width=5g0pt, minimum height=140pt] (step 1) {};
\node at (step 1) [yshift=15pt] {叮};
\node at (step 1) [yshift=0pt] {鈴};
\node at (step 1) [yshift=-15pt] {|};
\draw[-] (choice) -- node[right] {Yes} (step 1);
\end{tikzpicture}
\end{center}
\end{document}